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type of hypothesis test used and the method of com- 
putation employed. In unfavourable circumstances 
the validity of the test may be totally nullified. 

In reporting the results of crystal-structure analyses 
it is conventional to follow each atomic coordinate 
and temperature factor by its e.s.d. Usually this is 
given in brackets in the units of the least significant 
digit of the coordinate or temperature factor. Our 
results suggest that serious round-off errors in inter- 
experimental comparisons only occur when this num- 
ber in brackets is small, i.e. l, 2 and, possibly, 3. Thus, 
the problems discussed in this paper can be overcome 
if an extra digit of significance is reported in these 
cases. 

Olga Kennard is a member of the external staff of 
the Medical Research Council. 
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Abstract 

The multiple diffraction of X-rays and neutrons is 
discussed on the basis of the kinematical theory; a 
program for the simulation of ~b scanning and h 
scanning is developed, where the influence of the 
wavelength width of incident beams on the Ewald 
construction is properly taken into account. The effect 
of higher-order diffraction (n-beam interaction, 
n > 3 )  is treated as the sum of those of ( n - 2 )  pairs 
of relevant double diffractions (three-beam interac- 
tions). Applications are made for some examples for 
which experimental data are available; it is shown 
that the results are in very good agreement with 
experiment. This suggests that the kinematical 
approach is appropriate. The si~nulation is useful in 
planning ~-scanning experiments for precise struc- 
ture determination and for examining experimental 
data. 

I. Introduction 

Since Renninger (1937) showed the phenomenon of 
double diffraction (Umweganregung) in the pattern 
of t~ scanning of 222 of diamond, the importance of 
the effect on structure determinations has often been 
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discussed. In the early days, discussions were mainly 
concerned with possible errors in space-group deter- 
mination because, as mentioned by Lipson & Cochran 
(1953), the effect can interfere with the detection of 
glide planes and screw axes. Later, in connection with 
precise structure determination, the effect has been 
considered more generally (Coppens, 1968; Panke & 
W61fel, 1968): its effect on general reflections has 
been considered, to improve the accuracy of the 
intensity. 

The 0-scanning experiment, on the other hand, is 
not very easy even at present, particularly with speci- 
mens in special environments such as low or high 
temperature; it also requires a long machine time. If 
a computer simulation is available for double (i.e. 
multiple) diffraction, it will therefore be very useful 
in planning the ~b-scanning experiment. Moreover, in 
some cases, the experiment will be replaced by such 
a simulation, in part at least. Examination of the 
results of the ~b-scanning data by comparison with 
the simulation will also be worth doing. 

In the following, a computer simulation based on 
the kinematical theory will be developed for ~b scan- 
ning with monochromatic incident beams and for A 
scanning with white beams. The results will be applied 
to some examples and compared with experiments. 
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2. F o r m u l a t i o n  : 

2.1. Geometrical condition 

An Ewald construction for double diffraction 
(three-beam interaction) is shown in Fig. 1, where 
the reciprocal-lattice point being examined is labelled 
h; the second reciprocal-lattice point on the Ewald 
sphere, called an operat ive point ,  is labelled hop. If 
there are two or more operative points, they will .be 
indexed by an additional integer suffix. (See Appen- 
dix A.) 

We take the influence of the wavelength widths Of 
the incident beams into account. In this case, the 
Ewald sphere can be defined by a pair of spheres, 
touching each other at the point O, with radii corre- 
sponding to the wavelengths A + AA and A -AA. We 
then put the point h in the middle of the thickness 
of the sphere, the position for A. In Fig. 2, a section 
of the spheres including the point hop together with 
the wavevector of the incident beams is shown with 
an exaggerated thickness. The thickness Al along the 
radial direction hop is given by 

A I = 2  A - A A  A+AA c ° s ~ - - A 2 - ( A A ) 2 C ° S a '  

(1) 
where a is the angle shown in the figure. Reciprocal- 
lattice points for which the condition 

h o p -  c o s a  -<-~- (2) 

is fulfilled will be regarded as operative points. 
As seen in Fig. 2, the thickness of the sphere is 

rather sensitive to the Bragg angle 0. If t denotes the 
thickness along the direction of the wavevector of the 
scattered beams for A, 

4AA 
t--  A2--(AA)2. sin2 0. (3) 

The ratio Of t's at 0 = 45 and l0 ° is about 17 : 1. 
For ~b scanning, the Ewald sphere is rotated step- 

wise about the vector h, while, for A scanning, the 

radius of the sphere is varied stepwise keeping the 
point, h stationary. The conventional procedure is 
followed for these calculations. 

. , .  

2.2. Intensity 

Here we introduce a reciprocal'lattice" point called 
the cooperative point; it is represented by a vector 
hco in Fig. 1 and defined by the relation 

h =  hop+hco. (4) 

The quantities concerned with h, hop and hco will be 
indicated by the suffixes h, op and co, respectively. 

The present intensity calculation follows the treat- 
ment in the kinematical theory. We start from the 
expression for the intensity at h when no multiple 
diffraction occurs. It will be denoted by Ih and given 
by 

Ih = IorhNh, (5) 

where I0 is the incident intensity and rh an effective 
reflectivity including absorption and extinction, while 

Nh = IFhl2tP. (6) 

On the right-hand side, conventional notations are 
used; for neutron diffraction, the Lp factor will be 
replaced by the Lorentz factor. The Lorentz and 
polarization factors for three-beam cases given 
respectively by Post (1975) and Zachariasen (1965) 
will be used in the following. For the latter, the detail 
is given in Appendix B. The Nh'S are normalized to 
the largest among them. 

When the geometrical condition for three-beam 
interaction is fulfilled by h and hop, the intensity 
diffracted towards these points after the first (or 
primary) diffraction, Ih and lop respectively (Fig. 1), 
can be given by 

Ih = ( Io-- Iop) rhNn (7a) 

Iop= ( Io - Ih)ropNop. (7b) 

We understand that we observe intensities at h and 
ho~, which correspond to effective incident intensities 

Fig. 1. Ewald construction for double diffraction (three-beam 
interaction), h, hop and h¢o , respectively, denote the reciprocal- 
lattice point being examined, operative point and cooperative 
point defined by (4). Flow of intensity is shown as well. 

) 

Fig. 2. Schematic representation of the effect of AA, the width of 
the wavelength of the incident beam, on the Ewald construction 
for the three-beam case. 
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I0 lop and I 0 - I h  respectively. The solution of the 
simultaneous equations gives I, and Io~: 

Ih = r h N h ( 1  -- ropNop) I0 ( 8 a )  
1 - r h r o p N h N o p  

ropNop( l -- rhNh) 
/°P= 1--rhropNhNop Io. (8b) 

Since the order of magnitude of r's is ~10-2-10 -3, 
the denominators of (8) can be approximated to unity. 

We represent the intensity actually observed at h 
by (Ia)ob~, which will be given by Ia in (Sa) after 
correcting for the intensity escaping to hop via hc*o, 
and for that coming from hop via h~o. The two coopera- 
tive points form a Friedel pair; thus h*o =-hco.  We 
then get the following relation: 

( I h ) o b s / / 0  = r h N h (  1 -- rop Nop) 

rcoNco --raNh(1 -- ropNop) * * 

+ ropNop( 1 - rhNh)r~oNco. (9) 

~ST^RT ] 
i 

1 

Centre of E's sphere,l~-- 

[ Generation of hklop ] 

no 

[lntensity(I)-~ ] 
I 

Fig. 3. Flow chart for simulating multiple diffraction. The input 
parameters include lattice constants, structural parameters, A, 
AA, r, Io, domain distribution parameters, crystal alignment 
parameters, and specifications of h, X-ray or neutron and ~b or 
A scanning. 

Except in the region of anomalous dispersion, Nco = 
N*o. Moreover, in the present calculation, we start 
assuming that the reflectivity is constant for any reflec- 
tion. Under these conditions, we find that 

(Ih)obs/I0 = rNh( 1 -- rNop) 

- r 2 N h N c o + r 2 N o p N ¢ o  . (10) 

This expression is essentially equivalent to those given 
by Moon & Shull (1964) and Coppens (1968). The 
corrections for lh with positive and negative signs 
correspond to the processes of Umweganregung  and 
Aufhel lung,  respectively. 

From (10), we wee that the effect of three-beam 
interaction will be most remarkable if Nh --~ 0 and both 
of Nor, and Nco are large (Coppens, 1968). Then 
Umweganregung  is dominant and 

( lh)obs/I0 ~-- r 2 Sop Nco. ( 11 ) 

On the other hand, if Nop (or N¢o)-~ 0 and Nco (or 
Nop ) is large, Aufhe l lung  is dominant, though the 
effect will be much less appreciable: 

( lh)obs/I0 ~-- rNh( 1 -- rNco), (12a) 

or 

(lh)obs/I0 ~-- rNh( 1 -- rNop). (12b) 

Aufhe l lung  will also be dominant if Nh--Nop (or 
Nh--'= N¢o). We then find 

(Ih)obs/I0~-- rNh( 1 -- rNh). (13) 

The effect of possible multiple diffractions (n-beam 
cases) due to the existence of two or more operative 
points can be regarded, as given in Appendix A, as 
the effect of a whole set of three-beam interactions 
including h and one of the operative points. 

A few examples of the simulation, which follows 
the procedure mentioned above, will be presented in 
the following; a flow chart for the calculation is shown 
in Fig. 3. 

3.  A p p l i c a t i o n s  

3.1. CaF2 

In the upper part of Fig. 4, the simulation of ~b 
scanning of 002 of CaF2 with Mo K a  radiation is 
shown, where the calculation is made for A A / A  = 
0.1%, r = 0.02%, Bca= BE = 1 .Z~k 2 and steps of ~ = 
0.05 ° . In the lower part, on the other hand, the experi- 
mental results given by Coppens (1968)* are shown 
upside-down, where the ~b step is 0.04 °. 

* No description of the radiation used is given in the reference. 
The present assignment is made, after examining several charac- 
teristic X-rays usually used, as the only one that gave reasonable 
agreement with the experiment. 
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The intensity of 002: is extremely weak,  although 
not zero, even amongtheweak  reflections with h + k + 
l = 4n + 2. It is so weak that  the effect of the n-beam 
interaction can be observed fairly clearly, In this 
situation, we can determine the value of r by nor- 
malizing the intensity of n-beam interactions to that 
of 002, the constant intensity in the figure. The value 
mentioned above has been determined in this way. 

The overall agreement observed suggests that the 
present treatment as well as the assumptions included 
are reasonable. Moreover, it may be worth mentioning 
that the peak at ~ = 23 ° consists of six three-beam 
components; all of them have weak contributions 
resulting from operative and cooperative reflections 
with h, k, I all even. One of the largest contributions, 
about a third of the total intensity, is due to the pair 
022 and 024; the former is very strong and the latter 
weak. The ratio of the values of IF] 2 for 0,27., 024 and 
002 is about 33 000:210: 1. That is, although both 024 
and 002 belong to the same group with h + k +  l = 
4n + 2, the latter isvery much weaker than the former. 
This is the situation in which the three-beam interac- 
tion involving a weak reflection is appreciable for a 
weak h. 

3.2. Hypersthene 

More precise ~ scans have been carried out for 
hypersthene with space group Pbca (Sasaki & Mat- 
sumoto, 1977; Sasaki, Matsumoto & Sawada, 1981: 
Matsumoto, 1983). In Fig. 5, the experimental data 
for 071 with Mo Kc~ are shown in the lower part, 
while in the upper part the simulation is shown. In 
this calculation, the observed intensity data set for 

stronger 205 reflections is, directly .used instead of 
calculating from the structural parameters; A'A/A = 
0.1% and the step of ~b is 0.125 °. The value of r is 
taken to be 0.5%, although it will be meaningful only 
when the intensity is compared with that of symmetri- 
cally allowed reflections. In this figure, we find very 
good agreement between the simulation and the 
experiment. Minor disagreements seen there can be 
attributed to errors in calculation, namely those due 
to the use of an incomplete intensity data set and of 
the ~ step, which is not small enough; experimental 
errors may in part be responsible for the disagree- 
ments. 

3.3. GaAs 

Another precise example has been given for 002 of 
GaAs (Chang & Post, 1975); the ~b-scanning pattern 
and the simulation are shown in Fig. 6. The agreement 
is again excellent. 

3.4. Others 

In addition to the cases mentioned above, the simu- 
lation has been a~pplied to a few more examples 
including those of the A scanning; a list is given in 
Table 1 together with those mentioned above. No 
serious discrepancy has been observed between the 
simulation and the experiment, except for the case 
of M g A 1 2 0  4 (Thompson & Grimes, 1977); in this 
particular case, the calculation given by the authors 
is not in agreement with the experiment. In the case 
of Fe304, magnetic components of the intensity are 
taken into account in the simulation. 

Fig. 4. Pattern of ¢ scanning for 002 of CaF2 with Mo Ka. The 
upper partis that of the present simulation and lower part that 
of the experiment (Coppens, 1968). The peak at ~ = 23 ° men- 
tioned in the text is marked by an arrow. 

4. Discussion 

As pointed out by Lipson & Cochran (1953), the effect 
of double diffractions cannot produce any uncertainty 

11 L tlI, LJ 11 

l 
Fig. 5. Pattern of ¢ scanning for 071 of hypersthene with Mo Ka. 

The lower part is that of the experiment (Sasaki & Matsumoto, 
1977; Matsumoto, 1983). 
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Table 1. A list of  examples for which comparison with 
the present simulation has been made 

Type of 
Material hkl Beam scan Reference 

CaF 2 002 X-ray (Mo K a )  tO Coppens (1968) 
Ge 222 X-ray (Cu Ka I) $ Post (1975) 

GaAs 002 X-ray (Cu Ka I) ~O Chang & Post (1975) 
071) 

Hypersthene 900 ~ X-ray (Mo K a )  tO Sasaki & Matsumoto (1977) 
10,0,0 ) Matsumoto (1983) 

200 Neutron to Samuelson (1974)* 

Fe304 402 Neutron A "( Shirane et al. (1975) 
200 Neutron A, ~b j 
200 Neutron tO Samuelson & Steinsvoll 

MgAIzO 4 ( 1975)1 
200 Neutron ~b Thompson & Grimes (1977) 

• * The peaks in Fig. 1 of  the reference are assigned to double diffraction 
of  the type {31 I}-{111}. On the contrary, the present calculation shows that 
the main contributions to the peaks at ~ = 4 and 7 ° are due to {331}-{333} 
and {311}-{311}, respectively. The contribution of {31 I}-{111} appears on 
the peak at 6 --- 12 °, outside the range of the figure. 

t The peak at ~ - 10 ° in Fig. I of this reference is assigned to the double 
diffraction {311}-{111}. The present calculation shows that the contribution 
of  this is negligible because of very much weaker intensity of { 111 } in contrast 
to the case of Fe304. The main contribution to the peak is due to {311 }-{311 } 
instead. 

of lattice type, P, I, F etc. This can readily be under- 
stood by looking at the following form of (4): 

h 1 op 1 co" 

(14) 

In connection with structural phase transitions, the 
argument can be extended to the case of superlattice 
reflections. When indexing is based on the funda- 
mental lattice, at least one of h, k, I of the superlattice 
reflections is half integer, or 1/n integer in general. 

0 

I, , I a t [  

i 
_ 

Fig. 6. Pa t te rn  o f  g, s c a n n i n g  for  002 o f  G a A s  with C u  Kay. The  
lower  par t  is tha t  o f  the e x p e r i m e n t  ( C h a n g  & Post,  1975). 

Therefore, double diffractions with operative and 
cooperative points of the fundamental lattice cannot 
introduce any intensity to the superlattice reflection; 
the intensity can be transferred there only when either 
or both the operative and cooperative reflections are 
those of the superlattice. 

This means that the intensity of the double diffrac- 
tion is only of the order of 10-2-10 -3 of that of the 
superlattice reflection concerned even when the other 
reflection involved is of the fundamental lattice. Con- 
sequently, in usual conditions, double diffraction 
does not bring any detectable intensity to superlattice 
points. The situation can be seen from (11): if Nh is 
very small as in the present case, the only contribution 
is that of r2NopNco, which is not significant unless 
both of Nop and Nco are large, or at least very much 
larger than Nh. 

If there is any doubt about multiple diffraction, the 
comparison of experiment and simulation of the 
(or A) scanning will be very useful. Since weak 
intensities and loss of them can result from spurious 
processes, one must be careful in attributing them to 
multiple diffraction. In fact, in the literature of mul- 
tiple diffraction, we often find erroneous assignment 
of peaks; two examples are explicitly shown in Table 
1. Moreover, in some cases, attribution to multiple 
diffraction has been made without showing the assign- 
ment of contributing processes. 

It should be emphasized that the agreement 
between the present simulation and the published 
experimental data shows the validity of the kinemati- 
cal theory to multiple diffraction ( n-beam interaction) 
processes. This is quite contrary to what is stated in 
textbooks and previous papers: that is, it has been 
accepted that the n-beam interaction should be 
treated in terms of the dynamical theory. Discussion 
of this problem is not within the scope of the present 
paper. 

In consequence of the present study, however, the 
discussion of n-beam interactions becomes clear and 
easy to understand. Moreover, the calculation can be 
carried out even by microcomputers. 

In conclusion, it is to be hoped that the simulation 
of n-beam interactions will be applied to various cases 
in order to confirm the validity. 

The authors are grateful to Professor N. Kato for 
very encouraging comments on the applicability of 
the kinematical theory to the present problem. The 
work is supported by Grant-in-Aid for Scientific 
Research from the Ministry of Education, Science 
and Culture. 

APPENDIX A 

Here we examine the effect of the four-beam interac- 
tion. The two operative points of the Ewald sphere 
will be denoted by hop I and hop> The simultaneous 
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equations,corresponding~to~ (~7)f0f the three-beam 
ease'can be:given as Tollows:ir i ,. ! : : ~ : 

: : :,~ : ~In---(:!O--Jopl~1o.p2)~.rh~Nh ',.. (A. la)  
. 

• Iop, ( i 0 - !  . . . . .  : Ih'lopE)rop!No:pi (A.1 b) 

' ' :  , :: I ' o p : = ( I o - I ~ - ~ L b i ) r g 6 2 N o o 2 ~  (A . : l c )  

W, here, the quantities with the addit)onal 'suffixes 1 
and 2 correspond to hoP~,andhopE,~respectix'.ely. After 
(A.1) has been . solved, the intensity escaping: from h 
to hopl and hop 7 via relevant cooperative points can 
be wri t tenas (r~ol N¢ot + rco2Nco2)Ih~ with that coming 
to h from h opl and hop2 as (r~o! N~o~/op~ + r~o2Nco21op2). 
Fol!owing the discussion ,in § 2.2, and neglecting the 
terms of third: and fourth order in r, we find, the 
relation corresponding to (10) as followS: 

(Ih)obs/Io=rNh{1 r(Nopi + Nop2)} 

• .. . . . . .  . i  !NaNoo,;Noo;_) " 

" ' . :  ÷r2(Nep,N~o!+NopaN~o2).' (A.2) 

C o m p a r i n g  this equation with ( i 0 ) ,  and extending 
the discussion to the case of the existence of th'ree or 
more operative points, we find that the effect of the 
n-beam interaction can bedescr ibed by summing up 
the effects of independent three-beam interactions 
arising from pairs of h and individual .operative 
points, provided •that r is still i small for third and 
further diffractions. 

. 

• : A P P E N D I X  B 'i 

The polarization f ac to r  for three ,beam cases is 
described in the following. The quantity p given by 

: . .  

Acta Cryst. (1985). A41, 133-142 • 
• 

• . : ,  . . , . , ~  . .  , 

Zachariasen (1965.)can be ~expressed as ! 

t an  p ' = t a n x s i ~ i ' i & + 2 0 ) ,  (B.1) 
where, x and th are l(he angles made by the projection 
of lop on to the, Iolh plane with lop and I0, respectively 
(Fig. 1). According to Azaroff (1955), 

pco = {(cos2/3 cos 2 p + sin 2 p) cos 2 a 

+cos2/3sin 2 p+cos2p}/(1 +cos 2/3), (B.2) 

where a and /3  are the angles made by lop with Ih 
and Io respectively. P*o will be obtained by replacing 
/3 by 20. The total p factors are consequently PhP*o 
and PopPco for Aufhellung and Umweganregung, 
respectively. 
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' A b s t r a c t  

Linearly polarized synchrotron radiation has been 
used to observe X-ray dichroism of the bromate ion 
near the bromine K edge by transmission absorption 
spectroscopy using a crystal of potassium bromate,  
and to measure the anomalous scattering of bromine 
and its anisotropy in diffraction experiments with 

sodium bromate. The principal values of f"  are as 
high as 12 and 17 electrons atom -x and o f f '  as low 
as - 13 and - 15 for polarization respectively parallel 
and perpendicular to the threefold axis. The 
anisotropy is as much as 6.6 for f"  and 4.6 for f ' ,  or 
a few percent more after correction for thermal 
motion and for incomplete polarization of the beam. 
A consequence of this large anisotropy is that reflec- 
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